FDA IN-VITRO BROAD SPECTRUM TEST

AMA Ref. No.: MS15.FDA.BRDSPCTR.M.INVITRO.04121.GDG

Date: January 4, 2016

Sponsor: Goddess Garden
1821 Left Hand Circle Unit D
Longmont, Colorado 80501

Sample Description:
On November 30, 2015 one test sample labeled 2016 Reg. Lot# RDR025 was received from Goddess Garden and assigned AMA Lab No.: O-4121.

Upon arrival at AMA Laboratories, Inc., the test material is assigned a unique laboratory code number and entered into a daily log identifying the lot number, sample description, sponsor, date received and tests requested.

Samples are retained for a period of three months beyond submission of final report unless otherwise specified by the sponsor or if sample is known to be in support of governmental applications, in which case retained samples are kept two years beyond final report submission.

Sample disposition is conducted in compliance with appropriate federal, state and local ordinances.

Study Objectives:
The sample (AMA Lab No.: O-4121; Client No.: 2016 Reg. Lot# RDR025) was evaluated according to the broad spectrum testing method (21 CFR 201.327(j)) as defined by the Final Monograph; “Labeling and Effectiveness testing; Sunscreen Drug Products for Over-the-Counter Human Use”, Final Rule, 21 CFR Parts 201 and 310, (FR Doc. 2011-14766 Filed 06/16/2011 at 8:45 am; Publication Date: 06/17/2011, Docket No. FDA-1978-N-0018, RIN 0910-AF43) using Labsphere’s UV-2000S Benchtop Sunscreen Analyzer (S/N 1261635073). The Solar Light Xenon Arc Fade Test UV Simulator – Model 16S-300-003 V4.0 or LS1000-6S-UV was used as UV source of pre-irradiation.

Archiving:
All original samples, raw data sheets, technician’s notebooks, correspondence files, copies of final reports and remaining specimens are maintained on the premises of AMA Laboratories, Inc. in limited access marked storage files. A duplicate DVD copy of final reports is separately archived in a bank safe deposit vault.

Plate (Substrate):
PMMA Plates Sa: 6µm (Sa requirement: 2 to 7 µm)
Application Area: 5 cm x 5 cm = 25 cm² (Area requirement: min. 16 cm²)
Manufacturer: HeliosScreen Laboratoire
Designation: HD6 2009 000153
Methodology:

Quantity Applied:
Sunscreen product was applied to the roughened PMMA plate (roughened side uppermost) by weight, at an application rate of 0.75mg/cm² using a positive-displacement automatic pipette.

Spreading Technique:
The type of spreading action to be employed when applying the test product consists of two phases. Phase 1: Spreading with a very light pressure for approximately 30 seconds. Phase 2: Spreading with greater pressure for approximately 30 seconds.

The treated sample is then allowed to equilibrate for 15 minutes in the dark at ambient temperature to help facilitate formation of a standard stabilized product film.

Pre-Irradiation UV Dose (PID):
To account for lack of photostability, the test product is applied on the PMMA plate and irradiated with a fixed dose of UV radiation. The pre-irradiation dose to be delivered is calculated as follows:

\[\text{Dose} = 4 \text{ MED} = 4 \times 200 \text{ J/m}^2 - \text{eff} \times (800 \text{ J/m}^2 - \text{eff}) \]

Where:
MED: Minimal Erythemal Dose, the lowest UV dose that produces skin reddening.

\[1 \text{ MED} = 200 \text{ J/m}^2 - \text{eff} \]

UV Source (Solar Simulator) Emission Spectrum:
Solar simulator is filtered so that it provides a continuous emission spectrum from 290 to 400 nanometers (nm) with a limit of 1,500 watts per square meter (W/m²) on total solar simulator irradiance for all wavelengths between 250 and 1400 nm and the following percentage of erythema-effective radiation in each specified range of wavelengths:

<table>
<thead>
<tr>
<th>Wavelength range (nm)</th>
<th>Erythemal Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><290</td>
<td><0.1</td>
</tr>
<tr>
<td>290 - 300</td>
<td>1.0 – 8.0</td>
</tr>
<tr>
<td>290 - 310</td>
<td>49.0 – 55.0</td>
</tr>
<tr>
<td>290 - 320</td>
<td>85.0 – 90.0</td>
</tr>
<tr>
<td>290 - 330</td>
<td>91.5 – 95.5</td>
</tr>
<tr>
<td>290 - 340</td>
<td>94.0 – 97.0</td>
</tr>
<tr>
<td>290 - 400</td>
<td>99.9 – 100.0</td>
</tr>
</tbody>
</table>

In addition, UVA II (320-340 nm) irradiance is ≥ 20% of the total UV (290-400 nm) irradiance. UVA I (340-400 nm) irradiance is ≥ 60% of the total UV irradiance.

The emission spectrum of the solar simulator was determined using a radiometer with a response weighted to match the spectrum in ISO 17166 CIE S 007/E entitled “Erythemal reference action spectrum and standard erythema dose,” dated 1999 (First edition, 1999-12-15; corrected and reprinted 2000-11-15), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51.
Transmittance Measurements:
The transmittance values are measured at 1 nanometer intervals on three different plates with a minimum of 5 measurements per plate. Measurements of spectral irradiance transmitted for each wavelength λ through control PMMA plates coated with 15 microliters of glycerin (no sunscreen product) are obtained from 5 different locations on the PMMA plate [C₁(λ), C₂(λ), C₃(λ), C₄(λ), and C₅(λ)]. In addition, a minimum of 5 measurements of spectral irradiance transmitted for each wavelength λ through the PMMA plate covered with the sunscreen product are similarly obtained after pre-irradiation of the sunscreen product [P₁(λ), P₂(λ), P₃(λ), P₄(λ), and P₅(λ)]. The mean transmittance for each wavelength, \(\overline{T(λ)} \), is the ratio of the mean of the C(λ) values to the mean of the P(λ) values, as follows:

\[
\overline{T(λ)} = \frac{\sum_{i=1}^{n} P(λ)/n}{\sum_{i=1}^{n} C(λ)/n}
\]

Where: \(n \geq 5 \)

Calculation of mean absorbance values:
Mean transmittance values, \(\overline{T(λ)} \), are converted into mean absorbance values, \(\overline{A(λ)} \), at each wavelength by taking the negative logarithm of the mean transmittance value as follows:

\[
\overline{A(λ)} = -\log \overline{T(λ)}
\]

Determination of Critical Wavelength:
Critical wavelength measurements are used to measure the breadth of the UV absorbance curve. Critical wavelength \((λ_c) \) is the wavelength at which the area under the absorbance curve represents 90 percent of the total area under the curve in the UV region. This is expressed mathematically as:

\[
\int_{290}^{λ_c} \overline{A(λ)} dλ = 0.9 \int_{290}^{400} \overline{A(λ)} dλ
\]

Where: \(λ_c \) - Critical wavelength
\(\overline{A(λ)} \) - Mean absorbance at each wavelength
\(dλ \) - Wavelength interval between measurements

A mean critical wavelength of \(λ_c = 370 \) nm or greater is classified as broad spectrum protection.

Security Label Disclosure:
To prevent loss of and protect intellectual property, original, certified documents issued by AMA Laboratories Inc. can be identified by a proprietary, tamper evident security hologram affixed to all Conclusion/Signature pages on final reports. Any attempt to remove the hologram will irreversibly damage the label and leave an immediate trace, thus invalidating the document.

Only reports containing the AMA LABS, INC. hologram intact will be recognized by AMA Laboratories Inc. as a certified original.
Results:

Critical Wavelength: (requirement: minimum $\lambda_c = 370$ nm)

UV Source (LS1000-6S-UV Solar Simulator)	Irradiance Output: 5.0 MED/h				
Irradiation Time (Single Plate):	2880 sec				
Location 1	Location 2	Location 3	Location 4	Location 5	
Plate 1	376	376	376	376	376
Plate 2	375	375	376	376	376
Plate 3	376	376	376	376	376
Average:					375.87 nm

The Critical Wavelength of the above test material (AMA Lab No.: O-4121; Client No.: 2016 Reg. Lot# RDR025) is 375.87 nm, and satisfies the criteria for “Broad Spectrum” labeling (minimum of 370 nm required).
SIGNATURE PAGE

FDA IN-VITRO BROAD SPECTRUM TEST

AMA Ref. No.: MS15.FDA.BRDSPCTRMS.INVITRO.O4121.GDG
Date: January 4, 2016
Sponsor: Goddess Garden
1821 Lefthand Circle Unit D
Longmont, Colorado 80501
AMA Lab No.: O-4121
Client No.: 2016 Reg. Lot# RDR025

Kamil Wojtowicz, M.S.
Technician

Donna Muratschew, M.D.
Study Director

Date

March Skolik, M.S.
Technician

David R. Winne, B.S.
Technical Director

The AMA family of laboratories (AMA) represents fully independent testing facilities committed to the highest standards of unbiased testing and reporting. AMA is not in partnership, affiliation and/or association, in any way, with any other corporation, company, sole proprietorship, partnership, client, laboratory, and/or any other business entity (collectively, Business Associate(s)). Should any Business Associate(s) indicate via literature, advertising, reporting, publications, raw data, reports, correspondence and/or any other documentation that they are in any way in partnership, use ‘partnership’ language or indicate they are otherwise affiliated with AMA, this shall serve as formal notice that AMA shall in no event be legally bound by such claim(s) and any Business Associate(s) representing such affiliation shall, by this instrument, hold AMA harmless and indemnify AMA against and from, without limitation, legal responsibility, damages, lawsuits, actions, claims, proceedings, arbitrations, and the like which may arise against AMA from said Business Associate(s) claim of affiliation. Your possession of this fully executed, signed and dated, final report shall signify your acknowledgment, agreement and acceptance of and compliance with all of the foregoing.

All Services Undertaken Subject to the following General Policy: AMA reports are submitted for exclusive use of the clients to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the test, examination or surveys made. No quotations from AMA reports, or use of AMA names or the names of staff members or sub-contractors is permitted except as expressly authorized in writing. The liability of AMA with respect to services rendered shall in no event exceed the amount of one hundred dollars. Wherein this report is used to support commercial claims, the Sponsor is directed to provide said report in its entirety only.

AMA LABORATORIES, INC.
Quality Assurance Statement:

This study was inspected in accordance with the Standard Operating Procedures of AMA Laboratories, Inc. To assure compliance with the study protocol, the Quality Assurance Unit completed an audit of the study records and report.

Christian Gorgiote, B.S.
Quality Assurance Supervisor

1/4/16
Date